(PCA): - Dimension reduction analysis
-> It is a technique for feature extraction from a given data set.
-> There are N-number of Principal Component corresponding to the N-number of data.
-> 95% of the features of the extracted data belong to the first principal component.
-> Therefore, we have to select the first n-number of the principal component corresponding to the N-number of data; the choice of the n-number principal component is determined by the precision we are aiming for. 
-> So, PCA reduces the N-number of the principal components corresponding to the N-number of data into the n-number of the features; N >> n. 
-> Consequently, another name for this method is a dimension reduction analysis.
-> Example: - Considering the situation for the data sets X and Y.
            X     =     1,     2,     3,     4,     5,     6,     7,     8,     9,     10.
            Y     =     1,     4,     9,    16,   25,   36,   49,   64,    81,  100.
Here, the number of features = 2  and the number of samples = 10.
The steps for computing PCA are given as follows:
Step 1: Generate the covariance matrix for datasets X and Y.
                        | Cov (X, X)    Cov (X, Y) |
$A _{(2 X 2)}$   =      
                        | Cov (Y, X)     Cov (Y, Y) |
$\begin{align}Cov{(X, Y)}=\sum_{i=1}^N\frac{(x_i-\mu_X)(y_i-\mu_Y)}{N}\end{align}$
$Where, \; \mu_X$ and $\mu_Y$ are the mean of the given data sets $X$ and $Y$ respectively.
                            |  8.25          90.75 |
$A _{(2 X 2)}$   =      
                            | 90.75    1051.05 |
Step 2: Generate the characteristics equation by using covariance matrix $A_{(2 X 2)}$.
Note:- det ($A_{(2 X 2)}$ - $ \lambda $ I ) = 0; represents the characteristics equation and I = unit matrix.
               | 8.25 - $\lambda$          90.75 | 
      $\det$                                           = 0
               | 90.75    1051.05 - $\lambda$ |  
$\implies (8.25 - \lambda) (1051.05 - \lambda) - 90.75 * 90.75 = 0 $
$\implies  \lambda^{2} - 1059.3 \lambda + 435.6 = 0 $   .  . .   (1)                  
$ \implies \lambda_{1}=1058.89,      \lambda_{2}=0.411375$ .  
        The $ \lambda_{1}, \lambda_{2}$ represents the Eigen Values of the matrix $A_{(2 X 2)}$.
The first principal component is defined by the largest eigenvalue, the second principal component by the second-largest eigenvalue, and so on.
Step 3: The computation of the Eigen Vectors corresponding to the Eigen Values.
$(A_{(2 X 2)} - \lambda_{i} I) U_{i} = 0$ . . . (2)
        When $\lambda_{1}$ = 1058.89,    then  the $(A_{(2 X 2)} - \lambda_{i} I) U_{i}$ =  
     | -1050.64    90.75 |  | $u_{1}$ |                           | 0 |
                                                           = 
     |   90.75       -7.84  |  | $u_{2}$ |                           | 0 |
Now equating the matrix on both sides, we get. 
$-1050.64 * u_{1} + 90.75 * u_{2} = 0 $     . .  . (3)
and      $ 90.75 * u_{1} - 7.84 * u_{2} = 0 $     ... (4)
The Eigen Vectors corresponding to equations (3) and (4) are as follows:
|$u_{1}$|              | $90.75 * k$|                     |$7.84*k$|
             =                                    OR
|$u_{2}$|              |$1050.64*k$|                  |$90.75*k$| 
Where 'k=1' is a constant.
        When $\lambda_{2}$ = 0.411375,    then  the $(A_{(2 X 2)} - \lambda_{i} I) U_{i}$ =
  | 7.838625                90.75 |  | $u_{1}$ |                 | 0 |
                                                                     = 
  |   90.75       1050.638625  |  | $u_{2}$ |                 | 0 |
Now equating the matrix on both sides, we get. 
$7.838625 * u_{1} + 90.75 * u_{2} = 0 $     .   .   .  (5)
and   
 $ 90.75 * u_{1} + 1050.638625 * u_{2} = 0 $ . . . (6)
The Eigen Vectors corresponding to equations (5) and (6) are as follows:
|$u_{1}$|              |$90.75*k$|                   |$1050.64*k$|
             =                                  OR
|$u_{2}$|              |$-7.84*k$|                  |$-90.75*k$| 
Where 'k=1' is a constant.