Sunday, 22 January 2023

PRINCIPAL COMPONENT ANALYSIS (PCA)

(PCA): - Dimension reduction analysis


-> It is a technique for feature extraction from a given data set.


-> There are N-number of Principal Component corresponding to the N-number of data.


-> 95% of the features of the extracted data belong to the first principal component.


-> Therefore, we have to select the first n-number of the principal component corresponding to the N-number of data; the choice of the n-number principal component is determined by the precision we are aiming for. 


-> So, PCA reduces the N-number of the principal components corresponding to the N-number of data into the n-number of the features; N >> n


-> Consequently, another name for this method is a dimension reduction analysis.


-> Example: -  Considering the situation for the data sets X and Y.


            X     =     1,     2,     3,     4,     5,     6,     7,     8,     9,     10.

            Y     =     1,     4,     9,    16,   25,   36,   49,   64,    81,  100.

Here, the number of features = 2  and the number of samples = 10.


The steps for computing PCA are given as follows:

Step 1:    Generate the covariance matrix for datasets X and Y. 


                        | Cov (X, X)    Cov (X, Y) |
$A _{(2 X 2)}$   =      
                        | Cov (Y, X)     Cov (Y, Y) |


$\begin{align}Cov{(X, Y)}=\sum_{i=1}^N\frac{(x_i-\mu_X)(y_i-\mu_Y)}{N}\end{align}$

$Where, \; \mu_X$ and $\mu_Y$ are the mean of the given data sets $X$ and $Y$ respectively.



                            |  8.25          90.75 |
$A _{(2 X 2)}$   =      
                            | 90.75    1051.05 |


Step 2:    Generate the characteristics equation by using covariance matrix $A_{(2 X 2)}$.


    Note:-  det ($A_{(2 X 2)}$ - $ \lambda $ I ) = 0; represents the characteristics equation and I = unit matrix.


               | 8.25 - $\lambda$          90.75 | 
      $\det$                                           = 0
               | 90.75    1051.05 - $\lambda$ |  


   $\implies (8.25 - \lambda) (1051.05 - \lambda) - 90.75 * 90.75 = 0 $



$\implies  \lambda^{2} - 1059.3 \lambda + 435.6 = 0 $   .  . .   (1)                  

$ \implies \lambda_{1}=1058.89,      \lambda_{2}=0.411375$ .  

        The $ \lambda_{1}, \lambda_{2}$ represents the Eigen Values of the matrix $A_{(2 X 2)}$.

The first principal component is defined by the largest eigenvalue, the second principal component by the second-largest eigenvalue, and so on.


Step 3:    The computation of the Eigen Vectors corresponding to the Eigen Values. 


        $(A_{(2 X 2)} - \lambda_{i} I) U_{i} = 0$   .  .  .  (2)


        When $\lambda_{1}$ = 1058.89,    then  the $(A_{(2 X 2)} - \lambda_{i} I) U_{i}$ =  

     | -1050.64    90.75 |  | $u_{1}$ |                           | 0 |
                                                           
     |   90.75       -7.84  |  | $u_{2}$ |                           | 0 |


Now equating the matrix on both sides, we get. 

$-1050.64 * u_{1} + 90.75 * u_{2} = 0 $     . .  . (3)
and      $ 90.75 * u_{1} - 7.84 * u_{2} = 0 $     ... (4)

The Eigen Vectors corresponding to equations (3) and (4) are as follows:


|$u_{1}$|              | $90.75 * k$|                     |$7.84*k$|
             =                                    OR
|$u_{2}$|              |$1050.64*k$|                  |$90.75*k$| 

Where 'k=1' is a constant.

        When $\lambda_{2}$ = 0.411375,    then  the $(A_{(2 X 2)} - \lambda_{i} I) U_{i}$ =

  | 7.838625                90.75 |  | $u_{1}$ |                 | 0 |
                                                                     
  |   90.75       1050.638625  |  | $u_{2}$ |                 | 0 |


Now equating the matrix on both sides, we get. 

$7.838625 * u_{1} + 90.75 * u_{2} = 0 $     .   .   .  (5)
and   
 $ 90.75 * u_{1} + 1050.638625 * u_{2} = 0 $ . . . (6)

The Eigen Vectors corresponding to equations (5) and (6) are as follows: 


|$u_{1}$|              |$90.75*k$|                   |$1050.64*k$|
             =                                  OR
|$u_{2}$|              |$-7.84*k$|                  |$-90.75*k$| 

Where 'k=1' is a constant.

Step 4:  Computes the Normalized eigenvectors.









No comments:

Post a Comment

PRINCIPAL COMPONENT ANALYSIS (PCA)

(PCA) : - Dimension reduction analysis -> It is a technique for feature extraction from a given data set. -> There are N -number...