Friday, 7 March 2025

Software Engineering Lab - I, II

Software Engineering Lab:-

  • Software Engineering Lab is aimed to provide you hands-on experience with different aspects of Software Engineering through UML.
  • UML including requirements identification, DFD, behavioral and structural design using UML diagrams, implementation, testing, and so on.
  • Working with UML on above aspects of an assigned project to get a feel of the real-life software development process.
  • By making UML we can inderstand the behavior of the project in different ways.

Install Star UML on your system.     Alternative:- " Rational Rose Software "

Aim:- The student can install Star UML(tool) and execute experiments on this plateform.

  • Open google chrome.
  • Write Download tools to create UMLs.
  • Click on Star UML.
  • Click on the downloaded file and install it on your respective plateform.
  • Finally open it and start working with your given assignments.

Software Engineering Lab - I :-


1.    Prepare and draw CLASS diagram using UML tool. Illustrate the Aggregation and association with class diagram.

2.    Draw an E-R diagram and describe it with all entities and relationships.

3.    Draw the Data Flow Diagrams at level 0 and level 1.

4.    Illustrate all the attribute of USE CASE diagram and draw USE CASE diagram.

5.    Create a sequence diagram using UML tool.


Software Engineering Lab - II :-



1.    Problem analysis and project planning - through study of the problem - identify project scope, objectives and infrastructure.

2.    Software Requirement Analysis - Describe the individual phases/modules of the project and identify deliverables. Identify functional and non-functional requirements.

3.    Develop use case diagram.

4.    Build and test class diagram.

5.    Software design using sequence diagram.

6.    Software design using activity diagram.

7.    Component diagram and deployment diagram.

8.    Estimation of project size using Functional Point (FP) calculation.

9.    Design test script and test plan using both black box and white box approach.

10.    Software Requirements Specification - Develop the product prototype.



References:

  • Roger S Pressman, Software Engineering: A Practitioner's Approach, 7th Edition, McGraw Hill Education,2009.
  • Rajib Mall, Fundamentals of Software Engineering, Prentice Hall India, 2014
  • Bjarne Stroustrup, The C++ Programming Language, 4th Edition, Addison-Wesley, 2013
  • Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Addison Wesley, 1994

Thursday, 6 February 2025

Home


Soft Computing Laboratory Assignments - I, II, III, IV, V

Syllabus


An outline of the course is as follows.

Introduction to Soft Computing

  • Concept of computing systems.
  • "Soft" compiting versus "Hard" computing
  • Characteristics of Soft computing
  • Some applications of Soft computing techniques

Fuzzy logic

  • Introduction to Fuzzy logic.
  • Fuzzy sets and membership functions.
  • Operations on Fuzzy sets.
  • Fuzzy relations, rules, propositions, implications and inferences.
  • Defuzzification techniques.
  • Fuzzy logic controller design.
  • Some applications of Fuzzy logic.

Genetic Algorithms

  • Concept of "Genetics" and "Evolution" and its application to proablistic search techniques
  • Basic GA framework and different GA architectures.
  • GA operators: Encoding, Crossover, Selection, Mutation, etc.
  • Solving single-objective optimization problems using GAs.

Multi-objective Optimization Problem Solving

  • Concept of multi-objective optimization problems (MOOPs) and issues of solving them.
  • Multi-Objective Evolutionary Algorithm (MOEA).
  • Non-Pareto approaches to solve MOOPs
  • Pareto-based approaches to solve MOOPs
  • Some applications with MOEAs.

Artificila Neural Networks

  • Biological neurons and its working.
  • Simulation of biolgical neurons to problem soloving.
  • Different ANNs architectures.
  • Trainging techniques for ANNs.
  • Applications of ANNs to solve some real life problems.

end



Soft Computing:- It is a family of techniques with the capacity to solve a class of problems for which other conventional techniques are inadequate to solve.

Example:-    The differentiation of any equation of straight lines in slope-intercept form always yields slope.

y = f(x) = mx + c ;    (dy/dx) =m 

y = f(x) = 2D matrix;   (dy/dx) = can not be solved by any traditional techniques; need a soft computing approach for finding the first-order differentiation.

Components of soft computing:-

1.    Fuzzy Systems

2.    Neural Networks

3.    Evolutionary Search Strategies


Hybrid Components of Soft Computing:-

1.    Evolutionary-Fuzzy Systems

2.    Neuro-Evolutionary Systems

3.    Neuro-Fuzzy Systems

4.    Neuro-Fuzzy-Evolutionary Systems


Soft Computing Laboratory Assignments-I

Crisp Sets and Basic Operations


1.    Write python functions to generate the n-population from a given set.

2.    Write python functions to generate the n-sampling sets, each of size k, from a given set.  

3.    Write python functions to compute the union of two crisp sets.

4.    Write python functions to compute the intersection of two crisp sets.

5.    Write python functions to compute the symmetric difference of two crisp sets.

6.    Write python functions to compute the power set of a crisp set.

7.    Write python functions to check whether a crisp set is a subset of another set.

8.    Write python functions to check whether a crisp set is a superset of another set.

9.    Write python functions to check whether two input crisp sets is disjoint or not.
 
10.    Write python functions to implement the following:
            (a)    Add an element in a given set. 
            (b)    Update the set.
            (c)    Remove an element from the set. 
            (e)    Discard an element from the set. 
            (f)     Pop the element from the set.
            (g)    Clear the set. 
            (h)   Distinguish between remove() and discard() functions in python.

 

Soft Computing Laboratory Assignments-II

Fuzzy Membership Functions and Basic Operations



1.    Write python functions to generate the following parameterized fuzzy membership functions and visualize them for different parameter values:

        (a)    Triangular MF

        (b)    Trapezoidal MF

        (c)    Gaussian MF

        (d)    Generalized Bell MF
         
        (e)    PI-MF 
 
        (f)    Z-MF 
 
        (g)    S-MF
 
        (h)    Sigmoid MF


2.    Write python functions to generate asymmetric MF using sigmoidal MFs by the following methods and visualize them:

        (a)    Absolute difference

        (b)    Product


3.    Write python functions to implement following fuzzy complement operations and visualize them for different parameter values:

        (a)    Classical fuzzy complement

        (b)    Sugeno's fuzzy complement

        (c)    Yager's fuzzy complement


4.    Write python functions to implement following fuzzy intersection operations (T-norms) and visualize them for different parameter values:

        (a)    Minimum

        (b)    Algebraic product

        (c)    Bounded product

        (d)    Drastic product


5.    Write python functions to implement following fuzzy union operations (S-norms) and visualize them for different parameter values:

        (a)    Minimum

        (b)    Algebraic product

        (c)    Bounded product

        (d)    Drastic product




Soft Computing Laboratory Assignments-III


Extension Principle, Fuzzy Relations, Linguistic Variables and Fuzzy Reasoning


1.    Write a python function to compute the image of a fuzzy set  A  using extension principle given a mapping function f(x). Test your program for the following cases:


    (a)    A is Triangular MF in the range [1 to 10] and f(x) = x+ 3x3 .

    (b)    A is Trapezoidal MF in the range [1 to 10] and f(x) = x+ 3x3 .

    (c)    A Gaussian MF in the range [1 to 10] and f(x) = x+ 3x3 .

    (d)    A Generalized Bell MF in the range [1 to 10] and f(x) = x+ 3x3 .

    (e)    A Triangular MF in the range [1 to 5] and f(x) = (x-3)2 + 2 .

    (f)    A Trapezoidal MF in the range [1 to 5] and f(x) = (x-3)+ 2 .

    (g)    A Gaussian MF in the range [1 to 5] and f(x) = (x-3)+ 2 .

    (h)    A Generalized Bell MF in the range [1 to 5] and f(x) = (x-3)+ 2 .

    (i)    A Triangular MF in the range [0 to 8] and f(x) = sin(x)
    
    (j)    A Trapezoidal MF in the range [0 to 8] and f(x) = sin(x)

    (k)    A Gaussian MF in the range [0 to 8] and f(x) = sin(x)

    (l)    A Generalized Bell MF in the range [0 to 8] and f(x) = sin(x)



2.    Write a python function to compute the max-min composition of two fuzzy relations.


3.    Write a python function to compute the max-product composition of two fuzzy relations.

4.    Define two suitable primary linguistic terms (using Gaussian MF or Generalized Bell MF) representing old and young people respectively over the age range [0 to 100]. Now obtain the membership functions for the following non-primary terms:

    (a)    not very young and not very old.

    (b)    very young or very old.

    (c)    young but not very young.

    (d)    extremely young or more or less old.

Plot the membership functions for all the primary and non-primary terms on a single plot with proper legends.


5.    Demonstrate the effect of contrast intensification on a fuzzy membership function.

6.    Write python functions for implementing cylindrical extension of a 1 D membership function and projection of a 2 D membership function. Demonstrate the result visually.

7.    Demonstrate the interpretation of fuzzy implication as coupling and entailment with relevent plots.

8.    Given a fuzzy membership function function mf(X) representing the fact x is A and a fuzzy relation R(X,Y) representing the fuzzy implication if x is A then y is B, find the consequent membership function representing y is B. Implement this for both max-min and max-product compositions and demonstrate the process visually. 


9.    Implement the fuzzy reasoning procedure for the following:

        Premise 1 (fact):    x is A' and y is B'
        
        Premise 2 (rule 1):    if x is A1 and y is B1 then z is C1

        Premise 3 (rule 2):    if x is A2 and y is B2 then z is C2
---------------------------------------------------------------------------------------------

        Consequence (conclusion):  z is C'

The notations have usual meaning. Demonstrate the procedure visually.



Soft Computing Laboratory Assignments-IV


ANN, Pattern Classifiers, Pattern Associators, Backpropagation




1.    Write a python function to realizing the logical AND function through Hebb learning.
 
2.    Write a python function to realizing the logical AND function by a perceptron.

3.    Write a python function to realizing the logical AND function by a Least Mean Square(LMS) or Delta or Widrow Hoff Learning Rule.

4.    Write a python function to realizing the logical AND function by a Extended Delta Learning Rule.

5.    


Soft Computing Laboratory Assignments-V



Elementary Search Techniques (like-Travelling Salesperson Problem, Knapsack Problem), Advanced Search Strategies, Hybrid Systems 



1.    




BOOKS :-

[1]. J.S.R.Jang, C.T.Sun and E.Mizutani, “Neuro-Fuzzy and Soft Computing”, PHI, 2004, Pearson Education 2004. 

[2]. Timothy J.Ross, “Fuzzy Logic with Engineering Applications”, McGraw-Hill, International Editions, Electrical Engineering Series, Singapore, 1997. 

[3]. Davis E.Goldberg, “Genetic Algorithms: Search, Optimization and Machine Learning”, Addison Wesley, N.Y., 1989. 

[4]. R.Eberhart, P.Simpson and R.Dobbins, “Computational Intelligence - PC Tools”, AP Professional, Boston, 1996. 

[5]. Stamatios V. Kartalopoulos “Understanding Neural Networks and Fuzzy Logic Basic concepts & Applications”, IEEE Press, PHI, New Delhi, 2004. 

[6]. Vojislav Kecman, “Learning & Soft Computing Support Vector Machines, Neural Networks, and Fuzzy Logic Models”, Pearson Education, New Delhi,2006. 

[7] S. Rajasekaran & GA Vijayalakshmi Pai “Neural Networks, Fuzzy Logic, and Genetic Algorithms synthesis and application”, PHI





Friday, 31 January 2025

B.Tech. Pt-III (IT) 1 st Semester Examination, 2023. Subject: Graph Theory (Elective I). Paper: IT506B

 


B.Tech. Pt-III (IT) 1st Semester Examination, 2023 Subject: Graph Theory (Elective I) Paper: IT506B

Department of Engineering and Technological

 Studies, University of Kalyani


B.Tech. Pt-III (IT) 1st Semester

 Examination, 2023


Subject: Graph Theory (Elective I)


Paper: IT506B


Full marks=70 Time: 3 Hours


The figures in the right-hand margin indicate 

marks.


Candidate are required to give their answers 

in their own words as far as possible.

The notations follow their 

standard meanings.

Answer question number one and any 

five from rest.


1. Answer any ten questions: (2 x 10 = 20)


a) Define a graph and a subgraph.


b) What are the edge and vertex labeling?


c) Define order and size of a graph.


d) What do you mean by cut edge and

 cut vertex?


e) Explain union and intersection of two graphs.


f) A non-directed graph G has 8 edges. 

Find the number of vertices, 

if the degree of each vertex in G is 2.


g) What is cycle graph, 

differentiate it from wheel graph?


h)What is meant by complement of a graph? 

Find the complement of the cycle (C5) graph?

i) What is a complete graph? 

Find the degree of each vertex in a 

complete(K5) graph?

j) If G is a simple connected graph with 

70 vertices, 

then the number of edges of G is 

between --------- 

and --------- . Explain.


k) Suppose that G is a graph such that 

each vertex has degree 4 and 

|E|=4*|V| - 36. Then |V| = --------- 


and |E| = --------- .


l) What is rooted tree? 

Define level of a vertex in a rooted tree.


m) Determine the order and size of 

k-partite complete Kn1,n2,...nk graph.


n) Define simple path and circuit in a graph.


o) Define loop-graph and multi-graph.


2. a) Prove that, in any non-directed graph

 there is an even number of vertices of odd

 degree.


b) How many different simple graphs are 

there with the give verticex set

 {v1, v2,...., vn}? 


c) Suppose that G is a non directed graph 

with 12 edges. Suppose that G has 

6 vertices of degree 3 and the rest 

have degrees less than 3. 

Determine the minimum number of vertices

 G can have. 

                                                                                                                         (2+4+4)


3. a) Is there a graph with degree sequence

 (1, 3, 3, 3, 5, 6, 6) ?


b) Draw a nonsimple graph ‘G’ with degree 

sequence (1, 1, 3, 3, 3, 4, 6, 7) .


c) For any simple graph G, 

prove that the number of edges of G is less 

than or equal to n(n-1)/2, where n is the 

number of vertices of G.                                                                 

                                                                                                                                                                                                                                                                                                    ( 2+3+5)



4. a) Define isomorphism. 

Determine whether the following 

pair of graphs ‘H’ and ‘I’ are isomorphic.




b) Determine the graph G with adjacency

 matrix A such that


and (5+5)


5. a) If G is a connected planar graph,

then prove that the Euler’s formula

 (|V|-|E|+|R| = 2).


b) In a connected simple-plane graph G,

with |E| > 1, prove that |E| 3|V| - 6.


c) A complete graph Kn is planar iff n ≤ 4,

 justify. 

                                                                                                                     (4+4+2)


6. a) What do you mean by planar graphs?

b) Define dual graph and self-dual graph?


c) Show that the graph ‘I’ given below is

 planar

Find the dual graph of a planar graph ‘J’. 

Is it self-dual graph?



7. a) Differentiate between Euler path and

 Hamiltonian path.

b) Define chromatic number X(G). 

Find the X(G) of a graph ‘M’. 

c) What do you mean by a bipartite graph?

d) Find number of all possible binary tree of 

3-node.

                                                                                                                       (2+3+2+3)



8. Short notes:

                                                                        (2 x 5)

Answer any two of the following:


a) The four-color Problem.

b) The Hamiltonian Graphs.

c) The Königsberg Bridges Problem.

d) The Catalan numbers.




--------End---------------------

Page 1 of 6123...6Next »Last

Software Engineering Lab - I, II

Software Engineering Lab:- Software Engineering Lab is aimed to provide you hands-on experience with different aspects of Software Engineeri...